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A B S T R A C T   

Cities are experiencing more and more frequent extreme heat events in hot summers in the context of rising 
global temperatures. A precise understanding of the spatial distribution of the human outdoor heat exposure 
across neighborhoods in cities is of great importance for urban heat management. Different from remote sensing 
based the land surface temperature, this study calculated the mean radiant temperature, which is more objective 
to indicate human heat stress, to study the spatial distribution of human outdoor heat exposure in Philadelphia, 
Pennsylvania. The SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) model was applied to 
estimate the mean radiant temperature based on the high-resolution urban 3D model and meteorological data. 
This study further examined the spatial distributions of heat exposure levels across neighborhoods of different 
groups in Philadelphia. Results show that there is no significant disparity in terms of outdoor heat exposure levels 
for different racial/ethnic groups in Philadelphia. Generally, the elderly, who usually are more vulnerable to 
extreme heat, tend to live in neighborhoods with less outdoor heat exposure in summer (p<0.001). The higher- 
income people tend to live in thermally more comfortable neighborhoods (p<0.001). The study provides a 
precise understanding of the heat distribution across neighborhoods, which would further help to develop 
strategies to allocate resources to the most needed neighborhoods to maximumly mitigate the negative impact of 
urban heat.   

1. Introduction 

The increasingly frequent and intense extreme heat events in large U. 
S. cities cause more climate-related mortalities than any other hazardous 
weather event (Borden & Cutter, 2008; Stone, Hess, & Frumkin, 2010). 
In the context of global warming, heat waves are supposed to be more 
frequent and intense in many cities (Alexander & Arblaster, 2009). In 
addition, the urban heat island effect is believed to further exacerbate 
the mortality increase caused by heat stress in cities (Gabriel & End-
licher, 2011). The summer heatwaves would also increase the deaths 
and illnesses caused by infectious disease and air pollution (Easterling 
et al., 2000; McPhearson, Mustafa, & Ortiz, 2020; Patz, 
Campbell-Lendrum, Holloway, & Foley, 2005). Therefore, studying the 
extreme urban heat and its impacts on urban residents is of great 
importance for building thermally comfortable and climate-resilient 
cities. 

The extreme urban heat is not distributed evenly across neighbor-
hoods of cities, and not all populations are impacted by the extreme heat 

equally (Hsu, Sheriff, Chakraborty, & Manya, 2021; McDonald et al., 
2021; Reid et al., 2009). Hsu et al. (2021) investigated the heat exposure 
distribution using land surface temperature and found that the people of 
color tend to have more exposure to urban heat island exposure in major 
US cities. McDonald et al. (2021) found that low-income neighborhoods 
are 1.5 ◦C hotter than high-income neighborhoods in 93 municipalities 
of US. Those neighborhoods with more green spaces tend to be less 
vulnerable to the summertime extreme heat since the urban green space 
can mitigate the urban heat island effect and the tree canopies help to 
provide shade (Arnberger et al., 2017; Doick, Peace, & Hutchings, 2014; 
Kong, Yin, James, Hutyra, & He, 2014). The marginalized groups 
(low-income people, minorities) are generally more vulnerable to 
summer heat waves (CDC, Center for Disease Control, 2004; Reid et al., 
2012) for different socio-economic reasons. The elderly and young 
children are usually more vulnerable to extreme heat than those phys-
ically healthy young adults (McGeehin & Mirabelli, 2001; Medi-
na-Ramón, Zanobetti, Cavanagh, & Schwartz, 2006). Those people with 
preexisting health conditions are more vulnerable to extreme heat 
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(McGeehin & Mirabelli, 2001; Schwartz, 2005). In addition, the acces-
sibility to air-conditioning also impact people’s vulnerability to summer 
extreme heat. 

A fine level of quantitative information about where and which 
populations are vulnerable to heat is important to identify the most 
vulnerable neighborhoods and populations in order to mitigate the 
negative impacts of heat on urban residents (Gronlund, 2014; Reid et al., 
2012). The ground surface temperature estimated from remotely sensed 
thermal imageries has been widely used to map the intensity of the heat 
at large scales (Chen, Zhao, Li, & Yin, 2006; Equere, Mirzaei, & Riffat, 
2020; Guo et al., 2020; Johnson, Stanforth, Lulla, & Luber, 2012; 
Shandas, Voelkel, Williams, & Hoffman, 2019; Yang et al., 2019). The 
overhead view remote sensing can cover a broad spatial extent rapidly 
and periodically, which makes it an efficient tool to investigate the 
spatio-temporal distributions of ground surface temperature. However, 
the land surface temperature derived from remotely sensed imageries 
cannot fully represent human actual outdoor heat exposure. This is 
because human heat exposure is also impacted by other factors, such as 
shade, wind speed, humidity (Klemm, Heusinkveld, Lenzholzer, & van 
Hove, 2015; Norton et al., 2015), while those factors are usually not 
covered in the remotely sensed imageries, which usually indicate the 
surface temperature of the ground, building roofs, and the top of tree 
canopies. Although the remotely sensed imagery can estimate the land 
surface temperature of a large geographical area rapidly, however, it is 
still not able to detect the temporal variations of the heat exposure on a 
daily level. In addition, the remote sensing-derived land surface tem-
perature usually cannot show the fine-level spatial variations of human 
outdoor heat exposure across neighborhoods because of the relatively 
coarse resolution of the thermal imageries. 

The urban microclimate modeling based on high resolution 3D urban 
models and meteorological data makes it possible to examine how 
people are exposed to heat stress at a fine spatio-temporal level (Huang, 
Cedeno-Laurent, & Spengler, 2014; Lindberg & Grimmond, 2011; 
Lindberg & Grimmond, 2011; Matzarakis, Rutz, & Mayer, 2010). By 
simulating how the solar radiation reaching the ground, it is possible to 
compute the mean radiant temperature (Tmrt), which is the total net 
short and long-wave radiation a human exposed to the surrounding 
environment and has the strongest influence on human energy balance 
(Ali-Toudert & Mayer, 2007; Matzarakis et al., 2010; Mayer & Höppe, 
1987; Thorsson et al., 2014). The urban microclimate modeling also 
makes it possible to examine the impacts of urban canyons and urban 
landscapes on the human heat exposure, which would benefit urban 
design practices for urban heat management (Fröhlich, Gangwisch, & 
Matzarakis, 2019; Rodríguez-Algeciras, Tablada, Chaos-Yeras, De la 
Paz, & Matzarakis, 2018). Therefore, this study applied urban micro-
climate modeling to calculate and map the spatial distribution of the Tmrt 
across neighborhoods in Philadelphia to indicate human outdoor heat 
exposure. The high-resolution 3D urban model generated from LiDAR 
and land use map together with the meteorological data were used as the 
input to represent the urban geometry and local climate context for 
modeling human outdoor heat exposure, respectively. In order to 
examine the potential inequities in terms of outdoor heat exposure 
among different neighborhoods and population groups, this study 
further compared the Tmrt with the socio-economic statuses of residents 
in different neighborhoods. 

2. Methodology 

2.1. Study area and data sources 

The local climate in Philadelphia is humid subtropical, which fea-
tures hot and humid summers. In order to indicate the local climate, this 
study collected the meteorological data that includes the air tempera-
ture, direct radiation, diffuse radiation, humidity, and wind speed from 
the NREL (https://www.nrel.gov/research/data-tools.html). The mete-
orological data of 2018 from June 1st to August 31st at an hourly level 

was used in this study. In order to generate the urban 3D models, this 
study first created the normalized digital surface model (nDSM) based 
on the LiDAR cloud points using ArcGIS (Fig. 1(b)). The building height 
model and tree canopy height model were then created by overlaying 
the most recent land cover map (Fig. 1(a)) on the generated nDSM. The 
high-resolution LiDAR cloud point and the land cover map with a spatial 
resolution of 1 m were accessed from the Pennsylvania Spatial Data 
Access Portal (https://www.pasda.psu.edu/). 

2.2. Human outdoor heat exposure estimation 

As one of the most important factors that influence human energy 
balance and thermal comfort (Ali-Toudert & Mayer, 2007; Matzarakis 
et al., 2010; Mayer & Höppe, 1987; Thorsson et al., 2014), the mean 
radiant temperature (Tmrt) was used to indicate human heat exposure in 
this study. There are several existing widely used tools to compute the 
Tmrt, like ENVI-met (Bruse, 2004; Huttner, 2012), RayMan (Matzarakis, 
Rutz, & Mayer, 2007, 2010), and SOLWEIG (SOlar and LongWave 
Environmental Irradiance Geometry) model (Lindberg, Holmer, & 
Thorsson, 2008, 2018). In order to generate a large scale Tmrt map, this 
study customized the open-sourced SOLWEIG model for computing the 
continuous distribution of Tmrt in Philadelphia. The SOLWEIG has been 
applied and validated worldwide (Chen, Yu, Yang, & Mayer, 2016; Gál 
& Kántor, 2020; Lindberg & Grimmond, 2011; Lindberg, Onomura, & 
Grimmond, 2016; Thorsson, Lindberg, Björklund, Holmer, & Rayner, 
2011). Similar to the climate zone of the study area, the SOLWEIG model 
has also been validated in the humid sub-tropical climate, and modeling 
results show a well match with the measurements (Chen et al., 2016; 
Lau, Ren, Ho, & Ng, 2016). Therefore, the SOLWEIG model was used to 
calculate the Tmrt in this study based on the high-resolution building 
height model, tree canopy height model, together with meteorological 
data (Fig. 2). 

In order to better represent the human outdoor heat exposure level in 
the summer, this study calculated the Tmrt at hour level from 11 a.m. to 2 
p.m. every day from June 1st to August 31st in 2018, since these are 
considered the hottest times of one year and the most recent available 
meteorological data is in 2018. By aggregating the calculated hour-level 
Tmrt, this study then calculated the mean Tmrt to indicate the overall 
outdoor heat exposure level in the summer. Since the SOLWEIG model is 
too time consuming for city-scale Tmrt estimation, therefore, the input 
high resolution urban 3D models were chopped into small tiles. To solve 
the bias on the edges of tiles due to abrupt change on borders caused by 
splitting, a buffer zone of 150 m was added to each tile. This study 
further run the SOLWEIG model on high performance computer to es-
timate the Tmrt for those tiles, which were then mosaiced to cover the 
whole study area. Those buffered zones were removed in mosaicking to 
generate the Tmrt map for the whole study area. 

2.3. Environmental injustice analyses 

Previous studies have reported the thermal inequities in US cities and 
found that lower socioeconomic groups and minorities are generally 
exposed to a higher level of urban heat risk (Harlan, Brazel, Prashad, 
Stefanov, & Larsen, 2006; Mitchell & Chakraborty, 2015, 2018). This 
study examined the urban heat exposure among different groups of 
people in Philadelphia at a finer level using urban microclimate 
modeling. In order to examine the different Tmrt distributions among 
different neighborhoods of Philadelphia, this study conducted statistical 
analyses to investigate the associations between the Tmrt and explana-
tory variables that represent resident’s race/ethnicity and 
socio-economic status. Those explanatory variables were selected based 
on previous studies on environmental inequities (Huang, Zhou, & 
Cadenasso, 2011; Kim & Chun, 2019; Landry & Chakraborty, 2009; Lin, 
Wang, & Li, 2021; Mitchell & Chakraborty, 2018; Li, Zhang, Li, & 
Kuzovkina, 2016). To represent the race and ethnicity of residents in 
different neighborhoods, this study calculated variables of the 
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proportion of non-Hispanics Whites, the proportion of African Ameri-
cans, the proportion of Hispanics, and the proportion of Asian Ameri-
cans based on the American Community Survey census data (ACS 
2014–2018 5-year data). To represent the socio-economic status, this 
study further derived variables of per capita income, the proportion of 
people older than 65, the proportion of people younger than 18, the 
proportion of people with bachelor or higher degrees, and the propor-
tion of people without high-school degrees from ACS 2014–2018 5-year 
data. To make the pixel-level Tmrt comparable to the census data, the 
pixel-level Tmrt were aggregated at the census tract level using mean 
value. Since the calculated Tmrt focuses on pedestrian radiation fluxes 
(Lindberg & Grimmond, 2011), therefore, the Tmrt pixels for building 
roofs and water bodies were masked out while aggregating the 
pixel-level Tmrt to the census tract level. 

The ordinary least square (OLS) multivariate regression model was 
applied to investigate the associations between the explanatory vari-
ables and the Tmrt at the census tract level. Only those explanatory 
variables that are significantly correlated with the Tmrt (p < 0.05) were 
selected as independent variables in the regression analysis. The global 

Moran’s I statistic was used to determine whether the regression results 
were spatially biased because of spatial autocorrelation. The spatial 
regression model with consideration of the spatial dependence was then 
applied if a significant spatial autocorrelation was detected among the 
OLS regression model. 

3. Results 

3.1. Spatial distribution of the Tmrt 

Fig. 3 shows the spatial distribution of the average Tmrt in Philadel-
phia in the summer of 2018. Generally, the distribution of the Tmrt 
matches very well with the tree canopy cover and those areas with more 
tree canopies tend to have lower Tmrt (Fig. 3a). This is because the tree 
canopies would provide shade and help to reduce heat exposure on the 
ground. The northwestern and the northeastern parts of the study area 
have significantly lower Tmrt than the eastern and southern parts. Those 
eastern and southern parts that feature dense low-rise building blocks 
and low tree canopy covers have high Tmrt (Fig. 3b). Although with a 

Fig. 1. The location and datasets of the study area, (a) a patch of the land cover map in the study area, (b) the normalized digital surface model (nDSM) of a portion 
of the study area. 

X. Li                                                                                                                                                                                                                                               



Sustainable Cities and Society 72 (2021) 103066

4

relatively low tree canopy cover, the downtown area of Philadelphia 
(the region Fig. 3c) has relatively low Tmrt. The low outdoor heat 
exposure in the downtown area can be explained by the shade provision 

of high-rise building blocks there. Please note that the Tmrt map has some 
stripes in the northeastern part, which are caused by noise in the raw 
LiDAR cloud point. 

Fig. 2. The calculation of mean radiant temperature (Tmrt) using the SOLWEIG model based on tree canopy height model, ground and building height model, land 
cover, and meteorological data. 

Fig. 3. The spatial distribution of the average Tmrt in the study area and three typical regions from June 1st - August 31, 2018, (a) a region with large tree canopy 
cover and low Tmrt, (b) a typical region features concrete checkboard building blocks and high Tmrt, (c) a typical region in the downtown area with high-rise buildings 
and relatively low Tmrt. 
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Fig. 4 shows the aggregated Tmrt at the census tract level based on the 
pixel level Tmrt by masking out water and building roof pixels. Generally, 
those census tracts in the eastern and the southern parts have higher 
Tmrt. Those census tracts in the northwestern and northeastern parts 
have relatively low Tmrt. This is because of the large canopy cover in the 
northwestern and northeastern regions, and the tree canopies help to 
block the solar radiation and lower the Tmrt significantly. In addition, the 
downtown area also has relatively low Tmrt, which can be explained by 
the shadow casted by high-rise buildings. 

3.2. Socio-environmental analysis results 

Fig. 5 shows the scatter plots and the correlation coefficients of the 
census tract level Tmrt and different urban form variables, the percentage 
of tree canopy cover, the average tree canopy height, the percentage of 
the impervious surface, and the average building height. The percentage 
of tree canopy cover (Fig. 4(a)), the average tree canopy height (Fig. 4 
(b)), and the average building height (Fig. 4(d)) have a significant and 
negative correlation with the Tmrt at the census tract level, while the 
percentage of the impervious surface is significantly and positively 
correlated with the Tmrt (Fig. 4(c)). These correlations indicate that the 
tree canopy cover and the average height of building and tree canopies 
would help to reduce the potential outdoor heat exposure in hot sum-
mer, while the percentage of the impervious surface would increase the 

human outdoor heat exposure. 
Table 1 shows the correlation coefficients between the Tmrt and the 

selected explanatory variables at the census tract level. The per capita 
income has a significant and negative correlation with the Tmrt, which 
indicates that the rich people tend live in neighborhoods with low 
outdoor heat exposure. The proportion of people without high school 
degrees is significantly and positively correlated with the Tmrt, while the 
proportion of people with the bachelor or higher degrees is significantly 
and negatively correlated with the Tmrt. The proportion of non-Hispanic 
Whites has a significant and negative correlation with the Tmrt, however, 
the proportion of Hispanics has a significant and positive correlation 
with the Tmrt. The proportion of African Americans and the proportion of 
Asian Americans are both not significantly correlated with the Tmrt. The 
proportion of people under 18 years of age is significantly and positively 
correlated with the Tmrt, while the proportion of people older than 65 
years of age is significantly and negatively correlated with the Tmrt. 

Based on the correlation analysis results, the per capita income, the 
proportion of Hispanics, the proportion of people under 18 years of age, 
and the proportion of people older than 65 years of age were used in the 
regression model. The educational variables were identified as the 
cofounded variables of the per capita income, and were excluded from 
the regression analysis. Table 2 presents the results of OLS regression 
model at the census tract level. The OLS multivariate regression model 
helps to explain 30 % of the variation in the Tmrt change for the 376 

Fig. 4. The spatial distribution of the aggregated mean radiant temperature (Tmrt) at the census tract level in the study area.  
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census tracts of the study area. The per capita income and the proportion 
of people older than 65 years of age are significantly and negatively 
associated with the Tmrt, which means that those census tracts with 
higher per capita income or larger proportion of people older than 65 

years old age have lower outdoor heat exposure during summer. The 
proportion of Hispanics has a weakly and positively significant associ-
ation with the Tmrt. The proportion of people under 18years of age has no 
significant association with the Tmrt in the study area. 

Fig. 5. The scatter plots and correlations between the Tmrt and the urban form variables at the census tract level (N = 376), (a) the percentage of tree canopy cover 
and the Tmrt, (b) the average tree canopy height (feet) and the Tmrt, (c) the percentage of impervious surface and the Tmrt, (d) the average building height (feet) and 
the Tmrt. 

Table 1 
The correlations coefficients between the Tmrt and the selected socio-economic 
variables.  

Category Variables Pearson’s 
correlation 

Sig (2- 
tailed) 

N 

Economic 
status 

Per capita income − 0.49** 0.000 

376 

Education 

Proportion of people 
without high school degree 

0.49** 0.000 

Proportion of people with 
bachelor or higher degrees 

− 0.44** 0.000 

Race and 
ethnicity 

Proportion of non-Hispanic 
Whites − 0.26** 0.000 

Proportion of Hispanics 0.31** 0.000 
Proportion of African 
Americans 

0.09 0.071 

Proportion of Asian 
Americans 

0.04 0.446 

Age 

Proportion of people under 
18 years of age 0.35** 0.000 

Proportion of people older 
than 65 years of age − 0.39** 0.000  

** Correlation is significant at the 0.01 level (2-tailed).  

Table 2 
Ordinary least squares (OLS) regression model and spatial lag model (SARlag) of 
mean radiant temperature (Tmrt) and independent variables at census tract level 
in the study area.  

Variables 
OLS SARlag 

Coefficients (z- 
values) 

Coefficients (z- 
values) 

Constant 50.0862** 15.46** 
Per capita income (thousand dollar) − 0.04 (-6.95**) − 0.02 (-4.10**) 
Proportion of Hispanics 1.30 (2.21*) 0.14 (0.33) 
Proportion of people under 18 years of 

age 
0.36 (0.26) − 0.85 (-0.86) 

Proportion of people older than 65 
years of age 

− 6.27 (-4.78**) − 3.45 (-3.67**) 

R2 0.31  
Rho  0.70 
Adjusted R2 0.30  
F-statistic 41.85**  
Akaike info criterion  1268.98 
Moran’s I of residuals 0.51 (16.98**)   

* Significant at the 0.05 level (2-tailed).  

** Significant at the 0.01 level (2-tailed).  
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The spatial dependence of the residuals in the OLS model shows a 
significant spatial autocorrelation (Moran’s I = 0.51, z score = 16.98), 
therefore, this study further applied the spatial lag model based on the 
result of the Lagrange Multiplier test. The per capita income and the 
proportion of people older than 65 years of age are still significantly and 
negatively associated with the Tmrt after controlling the spatial auto-
correlation effects. The proportion of Hispanics and the proportion of 
people under 18 years old age have no significant association with the 
Tmrt. 

4. Discussion 

Extreme heat is an increasing threat to public health in cities. With 
the changing climate, more and more cities are exposed to more frequent 
extreme heatwaves. While a lot of attention has been paid on the urban- 
rural temperature gradients, the heat intensity also varies from neigh-
borhood to neighborhood within the city. Understanding the fine level 
spatial distribution of the human heat stress level would be helpful for 
developing strategies to minimize the negative impacts of extreme heat 
in cities and building more equitable and resilient cities in terms of 
thermal comfort. This study firstly conducted a large-scale human out-
door heat exposure modeling at the city level and mapped the distri-
bution of the averaged mean radiant temperature (Tmrt) in hot summer 
using urban microclimate modeling based on fine level digital city 
models and hourly meteorological data. Different from the widely used 
remote sensing-based land surface temperature, the Tmrt is more 
reasonable to represent human body energy balance and indicate human 
outdoor heat exposure in the summer with consideration of the air 
temperature, spatial-temporal distribution of shade, terrestrial radia-
tion, humidity, and wind speed. 

4.1. The spatial distribution of outdoor heat exposure 

The results show that the outdoor heat exposure distributes unevenly 
across Philadelphia. Generally, the eastern and the southern parts of 
Philadelphia are experiencing higher-level outdoor heat exposure in the 
summer compared with the northwestern and the northeastern parts. 
The Tmrt is highly associated with the tree canopy cover and those areas 
with more tree canopies tend to have lower Tmrt. In addition, the high- 
rise buildings would also cast shadow on the ground and make the 
Tmrt lower. The eastern and southern parts of Philadelphia, which are 
featured by dense low-rise buildings patterned as concrete checkerboard 
and low vegetation canopies are suffering more from the outdoor heat 
exposure than the northwestern and northeastern regions where have 
large tree canopy covers. 

The correlation analysis results show that the tree canopy cover is 
significantly and negatively correlated with the Tmrt, which indicates 
that increasing the tree canopy cover would reduce the outdoor heat 
exposure. Similar to previous studies that the Tmrt is significantly 
affected by the geometries of urban canyons (Herrmann & Matzarakis, 
2012; Lau, Lindberg, Rayner, & Thorsson, 2015; Martinelli & Matzar-
akis, 2017; Rodríguez-Algeciras et al., 2018), correlation analysis results 
show that the height of the building is negatively correlated with the 
Tmrt, which indicates that the high-rise buildings would provide shade 
and help to reduce the Tmrt. The percentage of impervious surface is 
positively correlated with higher Tmrt. These results are similar to pre-
vious studies using overhead view satellite imagery methods to monitor 
the ground surface temperature (Chen et al., 2006; Equere et al., 2020). 
This is because tree canopies would help to provide shade and reduce the 
direct sunlight exposure to pedestrians, while the non-building imper-
vious surface cannot block the sunlight from reaching the ground. The 
tree canopy height and the percentage of tree canopy cover have a 
stronger negative correlation with the Tmrt than the average building 
height, which means that the vegetation canopy would play a more 
important role in reducing the potential human heat exposure. 
Increasing the tree canopy and reducing the impervious surface would 

be good strategies to mitigate outdoor heat exposure in hot summers. 
However, from 2008 to 2018 the tree canopy cover in Philadelphia has 
decreased by 6% (Philadelphia Tree Canopy Assessment, 2018), which 
brings more challenges to the extreme heat mitigation in Philadelphia. 
The current tree canopy cover in Philadelphia is 20 % and there is still a 
lot of space across the city for trees planting, especially in those neigh-
borhoods of northern and southern regions. The spatial distribution of 
the outdoor heat exposure in this study would provide new insight for 
future urban tree planting projects in Philadelphia to reduce the resi-
dent’s heat stress, especially for those neighborhoods with a higher level 
of outdoor heat exposure. 

4.2. Environmental inequities in terms of heat exposure 

A precise understanding of who is more vulnerable to extreme heat is 
important for developing strategies to adapt to extreme heat (Gronlund, 
2014). This study investigated the outdoor heat exposure level in 
different neighborhoods of the study area. Different from the previously 
reported thermal inequities in other major US cities (Dialesandro, Brazil, 
Wheeler, & Abunnasr, 2021; Mitchell & Chakraborty, 2015), statistical 
analysis results show that there is no significant disparity in terms of 
outdoor heat exposure among different racial/ethnic groups in Phila-
delphia. The economic status and age groups are significantly associated 
with outdoor heat exposure. Similar to previous studies (Chakraborty, 
Hsu, Manya, & Sheriff, 2019; Mitchell & Chakraborty, 2015), the 
high-income people tend to live in neighborhoods with low outdoor heat 
exposure. This is because the rich people tend to pay more to live in 
more affluent neighborhoods with larger tree canopy covers or high-rise 
commercial areas, where the outdoor heat exposure level is lower. In 
Philadelphia, the elderly live in neighborhoods with low outdoor heat 
exposure. Since the old people are more sensitive and vulnerable to 
extreme heat (Åström, Bertil, & Joacim, 2011; Kovats & Koppe, 2005), 
living in cooler neighborhoods would be beneficial for their health. In 
addition, the elderly can have more outdoor activities in a more ther-
mally comfortable environment during summer, which would reduce 
the chronic disease caused by physical inactivity. 

4.3. Limitations and future work 

There are still serval limitations that need to be improved in future 
studies. Firstly, because of the computational intensity and the data 
availability, this study only uses the meteorological data of one year 
from June 1st to August 31st in 2018 to represent the overall outdoor 
heat exposure level in the study area. Future studies should use a longer 
time range in order to better represent the outdoor heat exposure level 
more objectively. In addition, future studies should also predict future 
heat exposure distributions in order to better evaluate the potential 
threat from heat events. Since more pixel operations in the urban 
microclimate modeling are parallelable, future studies should explore 
using parallel computing to accelerate the urban microclimate 
modeling. 

In addition, this study only models the dynamic of the environment 
while human mobilities are not considered. In order to better indicate 
human actual outdoor heat exposure, future studies should also consider 
the human mobilities and movements, and travel modes, etc. This study 
only used the mean radiant temperature, which indicates the thermal 
conditions of the environment. Future studies should use more human- 
centric metrics to indicate more personal human thermal comfort such 
as, physiologically equivalent temperature (PET), universal thermal 
climate index (UTCI), etc. Since different people have different sensi-
tivity to heat exposure levels, therefore, future work should incorporate 
more personal characteristics, such as age, gender in order to better 
indicate personal heat exposure information. 

Finally, this study only considers the outdoor heat exposure in the 
daytime, which cannot fully indicate human indoor heat stress and 
human heat stress at night. Future studies should also examine the 
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indoor heat stress level and nighttime heat stress. 

5. Conclusion 

This study estimated and investigated the spatial distribution of 
human outdoor heat exposure levels across neighborhoods of Philadel-
phia using urban microclimate modeling based on fine-level urban ge-
ometry derived from LiDAR data and meteorological data. This study 
generated a very fine level human outdoor heat exposure map in Phil-
adelphia based on a more human-centric method – mean radiant tem-
perature (Tmrt) to indicate the human thermal comfort. Generally, the 
northwestern part, northwestern part, and the downtown area of Phil-
adelphia have lower heat exposure level than the southern and eastern 
parts. The tree canopy is the major factor that impacts human outdoor 
heat exposure. The vegetation canopy coverage, canopy height, and 
building height all provide shade and help to reduce the potential out-
door heat exposure in the city, while the impervious surface is associated 
with increasing outdoor heat exposure. Statistical results show that 
there is no significant disparity in terms of outdoor heat exposure across 
racial/ethnic groups in Philadelphia. Generally, the elderly people, who 
are more vulnerable to extreme heat, live in neighborhoods with lower 
heat exposure in summer. The higher-income people tend to live in more 
thermally comfortable neighborhoods. 
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